Backpropagation Neural Network Method For The Classification of Districts/Cities Based On Macro Socio-Economic Indicators In The Province Of South Sulawesi

Abstract
Classification is a way of grouping objects based on the characteristics possessed by the objects of classified. One of the developing classification methods is the backpropagation neural network. This study aims to look at the descriptive and classification results of the District/City Macro Socioeconomic Indicators in South Sulawesi Province. The data set comprises 24 observations with 9 variables, namely population density, poverty line, Gini ratio, open unemployment rate, life expectancy, average length of schooling, labor force participation rate, life growth rate, and GRDP at current prices. A model with a total of 9 hidden layers and a learning rate of 0.002 is obtained with an accuracy of 70%, precision of 70%, recall of 100%, and F1 score of 87%.
References
Badan Pusat Statistik (BPS). "Indikator Makro Sosial Ekonomi Sulawesi Selatan Triwulan 2 2022". Accessed 6 October 2022, from https://sulsel.bps.go.id/publication/2022/08/31/adee8a96567e88b925a3568a/indikator-makro-sosial-ekonomi-provinsi-sulawesi-selatan-triwulan-2-2022.html
Badan Pusat Statistik (BPS). (2022). Gini Rasio. Accessed 15 October 2022, from https://sirusa.bps.go.id/sirusa/index.php/indikator/999
Binus University. (2022). Clustering Algoritma (K-Means). Accessed 12 October 2022, from https://sis.binus.ac.id/2022/01/31/clustering-algoritma-k-means/
Burlian, Paisol. 2021. Patologi Sosial. Jakarta: Bumi Aksara
Buscema, P. M., Massini, G., Breda, M., Lodwick, W.A., Newman, F., & AsadiZeydabadi. M. (2018). Artificial Neural Networks. Studies in Systems, Decision and Control. 131(January 2015), 11-35. http://doi.org/10/1007/978-3-319-75049-1_2
Cabreira, A. G., Tripode, M., & Madirolas, A. (2009). Artificial neural networks for fish-species identification. ICES Journal of Marine Science, 66(6), 1119–1129. https://doi.org/10.1093/icesjms/fsp009
Dewan Perwakilan Rakyat Republik Indonesia (DPR RI). Laju Pertumbuhan Ekonomi. Accessed 16 October 2022, from https://berkas.dpr.go.id/puskajianggaran/formula/file/formula-7.pdf
Dewi, D. Ayu Indah Cahya, & Pramita, Dewa Ayu Kadek. (2019). Analisis Perbandingan Metode Elbow dan Silhoutte pada Algoritma Clustering K-Medoids dalam Pengelompokan Produksi Kerajinan Bali. Matrix: Jurnal Manajemen Teknologi dan Informatika, 9(3), 102-109, https://doi.org/10.31940/matrix.v9i3.1662
Hasyim, Ali Ibrahim. 2016. Ekonomi Makro. Jakarta: Kencana
Hizham, F. A., Nurdiansyah, Y., & Firmansyah, D. M. (2018). Implementasi Metode Backpropagation Neural Network (BNN) dalam Sistem Klasifikasi Ketepatan Waktu Kelulusan Mahasiswa (Studi Kasus: Program Studi Sistem Informasi Universitas Jember). Berkala Sainstek, 6(2), 97. https://doi.org/10.19184/bst.v6i2.9254
Kementerian Koordinator Bidang Pembangunan Manusia dan Kebudayaan. (2020). Pemerintah Fokus Pulihkan Kondisi Sosial Ekonomi Masyarakat. Accessed 13 October 2022, from https://www.kemenkopmk.go.id/pemerintah-fokus-pulihkan-kondisi-sosial-ekonomi-masyarakat
Kusumadewi, S. (2010). Pengantar Jaringan Saraf Tiruan. Teknik Informatika UII
Lausiry, M. N., & Tumuka, L. (t.t.). Analisis Kondisi Sosial-Ekonomi Masyarakat Migran Sebelum Dan Sesudah Berada Di Kota Timika. 23.
Lewis, D. N. D. (2017). Neural Networks for Time Series Forecasting With R. 227.
Lobel, B. (2004 : 99). Simbol yang dapat memperlihatkan Kedudukan/Status Sosial. Diambil kembali dari uin-malang.ac.id: http://etheses.uin-malang.ac.id/600/6/10410177%20Bab%202.pdf
Maharani Dessy Wuryandari, I. A. (2012). Jurnal Komputer dan Informatika (KOMPUTA). 1, 7.
Marius, A. J. (2006). Perubahan Sosial. Jurnal Penyuluhan. 2(2). 125-132. https://doi.org/10.25015/penyuluhan.v2i2.2190
Nasehudin, T. S., Gozali, N. 2012. Metode Penelitian Kualitatif. Pustaka Setia
Pawara, P., Okafor, E., Groefsema, M., He, S., Schomaker, L. R. B., & Wiering, M. A. (2020). One-vs-One classification for deep neural networks. Pattern Recognition, 108, 107528. https://doi.org/10.1016/j.patcog.2020.107528
Poerwanto, B., & Fajriani, F. (2020). Resilient Backpropagation Neural Network on Prediction of Poverty Levels in South Sulawesi. Matrik : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 20(1), 11–18. https://doi.org/10.30812/matrik.v20i1.726
Puspitaningrum, D. (2006). Pengantar Jaringan Saraf Tiruan
Rahmadhani, H. (2015). Peran Toke Kelapa Sawit Dalam Membantu Perekonomian Para Pekerja Menurut Perspektif Ekonomi Syariah Di Kepenghuluan Ujung Tanjung Kecamatan Tanah Putih Kabupaten Rohil. 10.
Sajidah, A. (2016). Pengelompokan Provinsi Di Indonesia Berdasarkan Indikator Kesejahteraan Rakyat Menggunakan Metode C-Means Dan Fuzzy C-Means Clustering. 84.
Salmaa. (2021). Pengertian Tinjauan Pustaka, Manfaat, Cara Membuat dan Contoh Lengkap. Accessed 16 October 2022, from https://penerbitdeepublish.com/tinjauan-pustaka/
Smeru Research Institute. (2020). Studi Dampak Sosial-Ekonomi Pandemi Covid-19 di Indonesia. Accessed 13 October 2022, from https://smeru.or.id/id/research-id/studi-dampak-sosial-ekonomi-pandemi-covid-19-di-indonesia
Suhendra, C. D., & Wardoyo, R. (2015). Penentuan Arsitektur Jaringan Syaraf Tiruan Backpropagation (Bobot Awal dan Bias Awal) Menggunakan Algoritma Genetika. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 9(1), 77. https://doi.org/10.22146/ijccs.6642
Sunarto. Kamanto. 2004. Pengantar Sosiologi. Jakarta: Lembaga Penerbit Fakultas Ekonomi Universitas Indonesia
Syahputra, H., & Harjoko, A. (2011). Klasifikasi Varietas Tanaman Kelengkeng Berdasarkan Morfologi Daun Menggunakan Backpropagation Neural Network dan Probabilistic Neural Network. IJCCS (Indonesian Journal of Computing and Cybernetics Systems), 5(3), 11. https://doi.org/10.22146/ijccs.5206
Trivusi. (2022). K-Means Clustering: Pengertian, Cara Kerja, Kelebihan, dan Kekurangannya. Accessed 12 October 2022, from https://www.trivusi.web.id/2022/06/algoritma-kmeans-clustering.html
UUD 1945 Tentang Keadilan Sosial dan Kesejahteraan Rakyat
UU RI Nomor 23 Tahun 2005 Tentang Administrasi Kependudukan
Wahyuningrum, V. (2020). Penerapan Radial Basis Function Neural Network dalam Pengklasifikasian Daerah Tertinggal di Indonesia. Jurnal Aplikasi Statistika & Komputasi Statistik, 12(1), 37. https://doi.org/10.34123/jurnalasks.v12i1.250
Wibawa, A. P., Purnama, . G. A., Akbar, M. F., & Dwiyanto, F. A. (2018). Metode-metode Klasifikasi. Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, 3(1), 134-138.
Wijaya, A. P., & Santoso, H. A. (2016). Naive Bayes Classification pada Klasifikasi Dokumen Untuk Identifikasi Konten E-Government Naive Bayes Classification on Document Classification to Identify E-Government Content.
Xu, J., Tan, W., & Li, T. (2020). Predicting fan blade icing by using particle swarm optimization and support vector machine algorithm. Computers & Electrical Engineering, 87, 106751. https://doi.org/10.1016/j.compeleceng.2020.106751
Copyright (c) 2025 Zulkifli Rais, Sudarmin, Akbar Syahputra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.